Reflexive Polytopes and Lattice-Polarized K3 Surfaces
نویسنده
چکیده
We review the standard formulation of mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, and compare this construction to a description of mirror symmetry for K3 surfaces which relies on a sublattice of the Picard lattice. We then show how to combine information about the Picard group of a toric ambient space with data about automorphisms of the toric variety to identify families of K3 surfaces with high Picard rank.
منابع مشابه
Humbert surfaces and the moduli of lattice polarized K3 surfaces
In this article we introduce a collection of partial differential equations in the moduli of lattice polarized K3 surfaces whose algebraic solutions are the loci of K3 surfaces with lattice polarizations of higher rank. In the special case of rank 17 polarization such loci encode the well-known Humbert surfaces. The differential equations treated in the present article are directly derived from...
متن کاملReflexive Polytopes of Higher Index
We introduce reflexive polytopes of index l as a natural generalisation of the notion of a reflexive polytope of index 1. These l-reflexive polytopes also appear as dual pairs. In dimension two we show that they arise from reflexive polygons via a change of the underlying lattice. This allows us to efficiently classify all isomorphism classes of l-reflexive polygons up to index 200. As another ...
متن کاملOn the number of Enriques quotients of a K3 surface
A K3 surface X is a compact complex surface with KX ∼ 0 and H (X,OX) = 0. An Enriques surface is a compact complex surface with H(Y,OY ) = H (Y,OY ) = 0 and 2KY ∼ 0. The universal covering of an Enriques surface is a K3 surface. Conversely every quotient of a K3 surface by a free involution is an Enriques surface. Here a free involution is an automorphism of order 2 without any fixed points. Th...
متن کاملRemarks on Connected Components of Moduli of Real Polarized K3 Surfaces
We have finalized the old (1979) results from [11] about enumeration of connected components of moduli or real polarized K3 surfaces. As an application, using recent results of [13] (see also math.AG/0312396), we completely classify real polarized K3 surfaces which are deformations of real hyper-elliptically polarized K3 surfaces. This could be important in some questions, because real hyper-el...
متن کاملLattices generated by skeletons of reflexive polytopes
Lattices generated by lattice points in skeletons of reflexive polytopes are essential in determining the fundamental group and integral cohomology of Calabi-Yau hypersurfaces. Here we prove that the lattice generated by all lattice points in a reflexive polytope is already generated by lattice points in codimension two faces. This answers a question of J. Morgan.
متن کامل